

Югорский государственный университет State university of Yugra

ГЕОИНФОРМАЦИОННЫЙ АНАЛИЗ ВЗАИМОСВЯЗИ КЛИМАТИЧЕСКОГО СОСТОЯНИЯ И ГЕОБОТАНИЧЕСКОЙ СТРУКТУРЫ ТЕРРИТОРИИ ЗАПАДНОЙ СИБИРИ

Ю.М. Полищук*, В.П. Иродова,

*Югорский Государственный университет 628011, г. Ханты-Мансийск, ул. Чехова, 16; e-mail: yupol@uriit.ru Институт химии нефти СО РАН 634055, г. Томск, пр. Академический, 3; e-mail: ypi@ipc.tsc.ru

THE GEOINFORMATION ANALYSIS OF INTERRELATION OF THE CLIMATIC STATE AND GEOBOTANICAL STRUCTURE OF WEST-SIBERIAN TERRITORY

Tenp bagonri:

Изучение взаимосвязи геоботанической структуры таежной зоны Западной Сибири и показателей климатического состояния территории.

Использованы следующие материалы:

- карта административного районирования;
- карта геоботанического районирования;
- карта ландшафтного районирования;
- данные о природно-климатическом состоянии

The purpose of work:

Studying interrelation of geobotanical structure of a taiga zone of Western Siberia and parameters of a climatic condition of territory.

Following materials are used:

- A card of administrative division into districts;
- Card of geobotanical division into districts;
- Card of landscape division into districts;
- Data about a natural-climatic condition

Объект исследования

Объектом исследования является территория Западно-Сибирской низменности в границах административных регионов: Ямало-Ненецкого и Ханты-Мансийского автономных округов, Томской, Новосибирской, Тюменской и Омской областей.

Для анализа природно-климатических особенностей исследуемой территории были использованы данные:

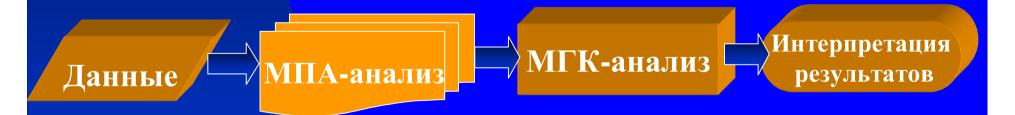
- •среднегодовые значения температуры воздуха,
- •количества атмосферных осадков,
- •величины максимальных годовых значений характеристик снежного покрова (высота, плотность и запасы воды в снеге),
- •число Вольфа за период 1955-1992 гг. на 99 станциях

Object of research

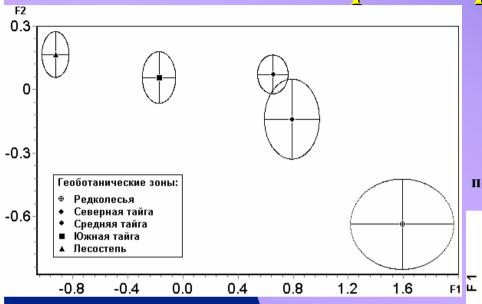
An object of researches is the territory Western-Siberian lowland in borders of Yamalo-Nenetsk and Khanty-Mansyisk autonomous district, Tomsk, Novosibirsk, Tyumen and Omsk region.

For the analysis of natural-climatic features of investigated territory data have been used:

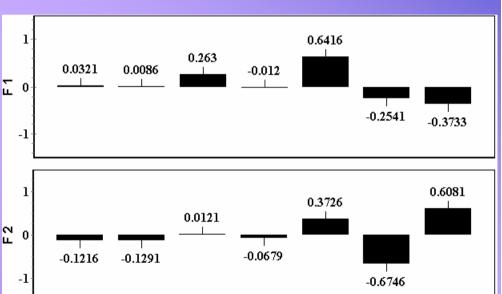
- Mid-annual values of temperature of air,
- Quantities of atmospheric precipitation,
 Sizes of the maximal annual values of characteristics of a snow cover (height, density and stocks of water in a snow),
- Volf's number for the period 1955-1992 at 99 stations


Map of a network of meteorological stations

Обобщенная схема геоинформационного анализа данных


Основа подхода – сочетание двух методов анализа:

- пространственный анализ данных (МПА)
- метод главных компонент (МГК)


The generalized scheme of the geoinformation analysis of data

МГК-янялиз на основе геоботанического райониования

Распределение доверительных областей первых двух ГК

первые две главные компоненты F1 и F2 в сумме более 85 %

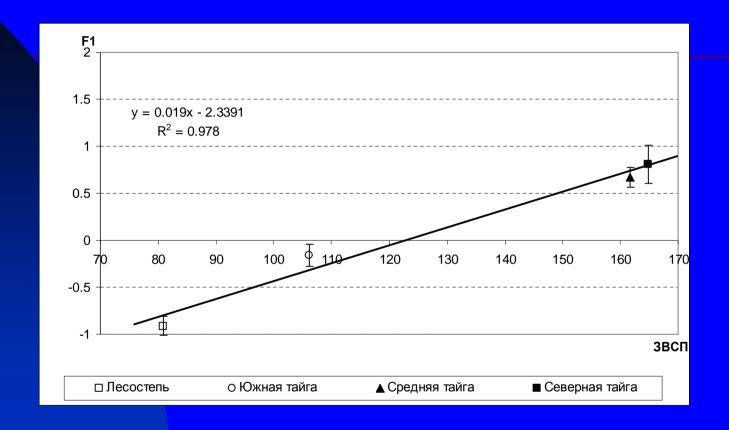
5

6

Нагрузки на главные компоненты:

Обозначения показателей:

- 1. температура воздуха,
- 2. количество осадков
- 3. высота снежного покрова,
- 4. плотность снежного покрова,
- 5. запас воды в снежном покрове
- 6. число Вольфа,
- 7. высота станции над уровнем моря


The PCA-analysis on the base of geobotanical zoning

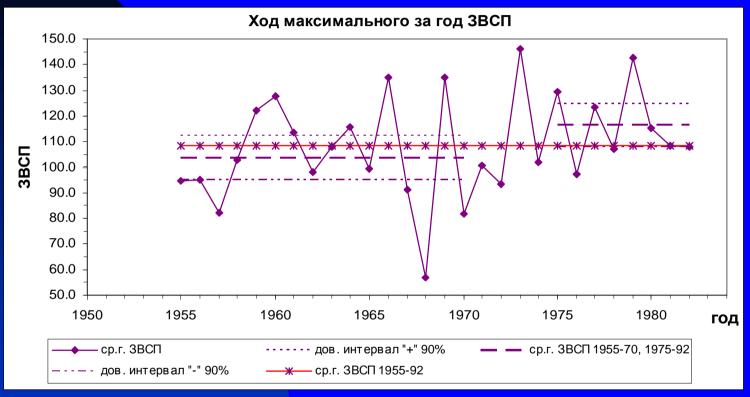
Анализ нагрузок на главные компоненты для каждой геоботанической зоны

The analysis of loadings on the principal components for each geobotanical zone

Зависимость F1 от водозапаса в СП

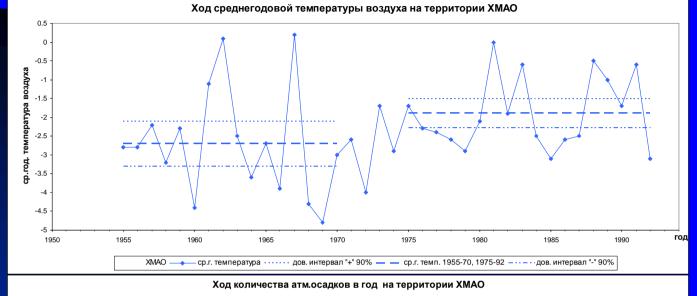
Interrelation between F1 value and water-stock in a snow cover

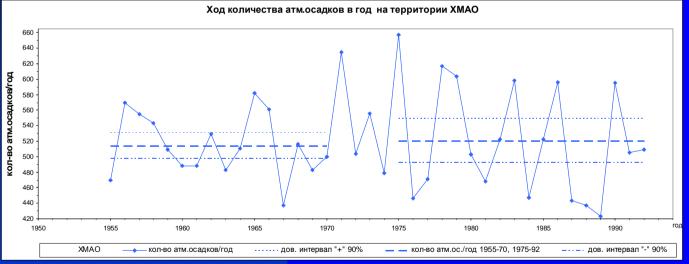
Изменения температуры и осадков на территории Томской, Омской и Новосибирской областей



В период с 1970 г. до 1980 г. среднемноголетняя температура воздуха увеличилась на $0.8~^{0}$ С

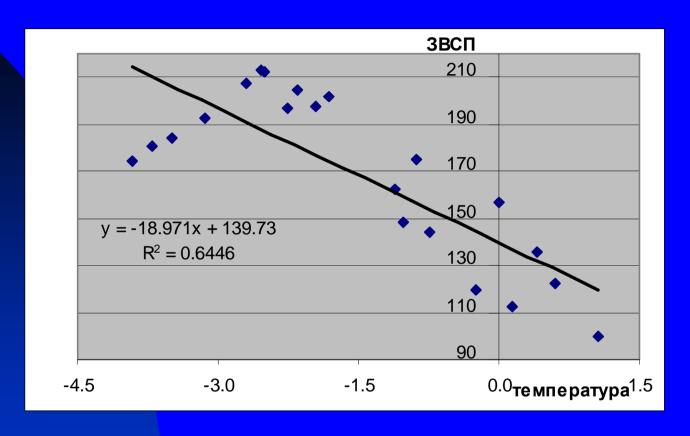
Changes of temperature and deposits in territory of Tomsk, Omsk and Novosibirsk regions


Изменение запаса воды в снежном покрове на территории Томской, Омской и Новосибирской областей

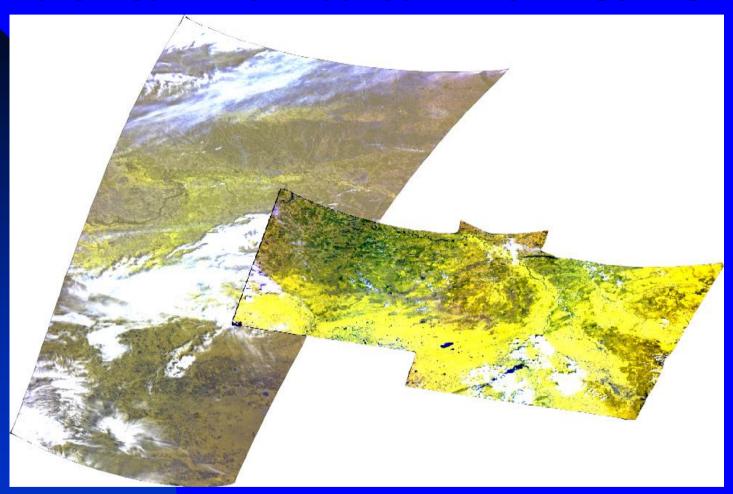

В период 1970 – 1980 гг. ЗВСП увеличился на 12,8 мм.

Change of water stock in snow cover in territory of Tomsk, Omsk and Novosibirsk regions

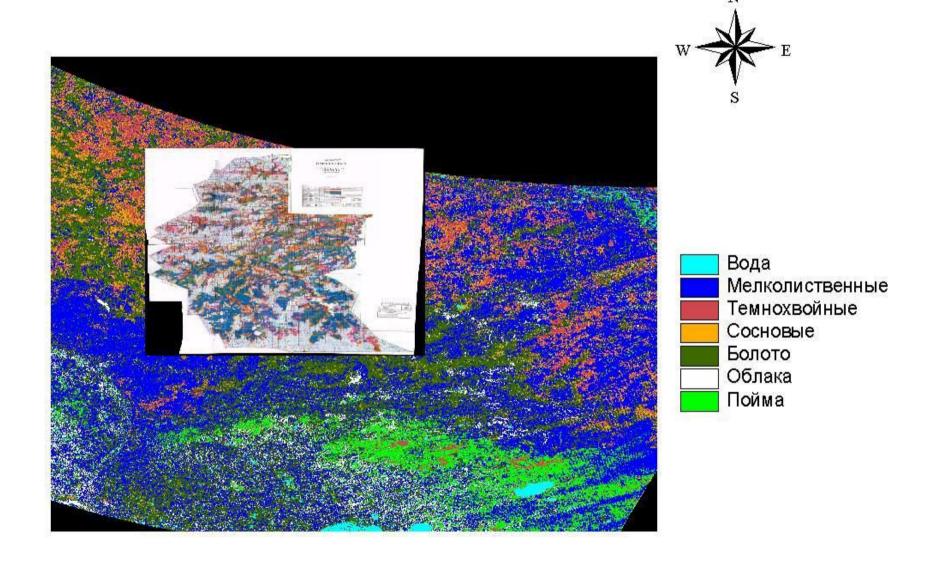
Изменения температуры и уровня осадков на территории **ХМАО**


В период 1970 - 1980 гг. среднегодовая температура воздуха увеличилась на 0,8 °C

В период 1970 - 1980 г.г. среднегодовая сумма атмосферных осадков увеличилась на 6,1 мм.


Changes of temperature and level of deposits in territory of Khanty-Mansyisk region

Взаимозависимость водозапаса в снежном покрове и среднегодовой температуры воздуха


Interrelation between water-stock in a snow cover and mid-annual temperature of air

Связь структуры растительного покрова с климатическими характеристиками с использованием космоснимков МСУ – СК

Interrelation between structure of a vegetative cover and climatic characteristics using space images of MSU-SK

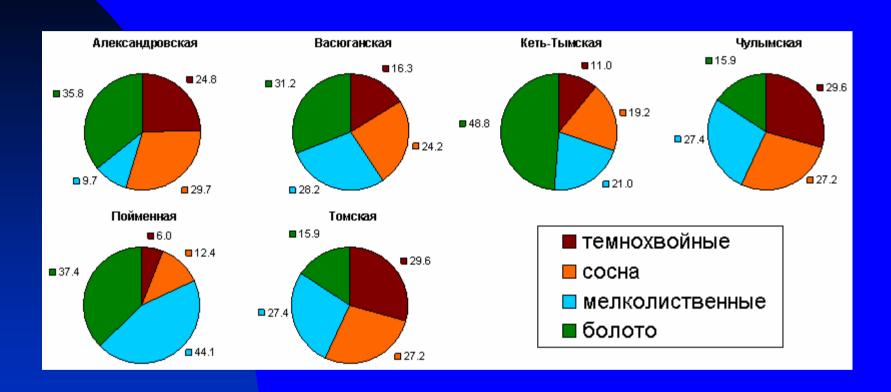
Наложение лесотаксационного плана на космоснимок

Схема последовательности этапов обработки и анализа космоснимков

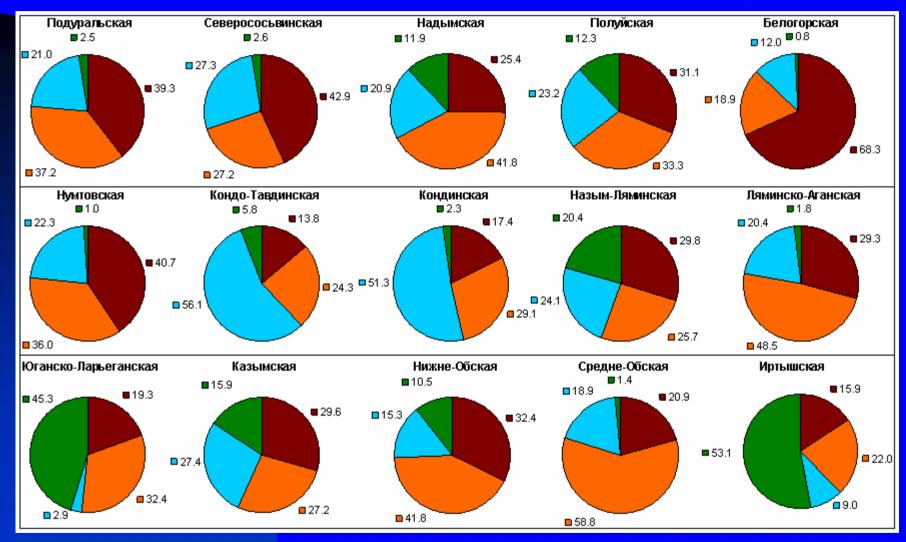
Освоена работа программного комплекса, реализующего алгоритмы классификации и векторизации космоизображений с применением систем обработки изображений ERDAS и геоинформационной системы ArcView. Определена схема последовательности этапов обработки и анализа космоснимков.

- 1) Сбор дополнительной информации на исследуемую территорию и создание цифровых карт,
- 2) Географическая «привязка» снимка (ERDAS Imagine),
- 3) Классификация ландшафтных выделов (ERDAS Imagine),
- 4) Векторизация классифицированных объектов (ArcView GIS),
- 5) Анализ ландшафтной структуры (ArcView GIS)

Анализ проводился путем определения площадей ландшафтных выделов с использованием программных средств

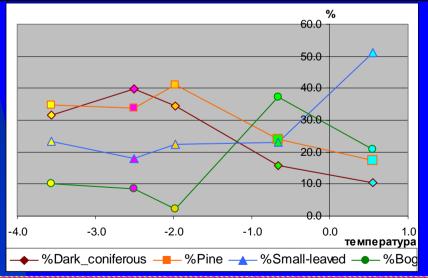

The scheme of sequence of stages of processing and the analysis space images

Карта ландшафтных провинций центральной и юго-восточной частей Западной Сибири

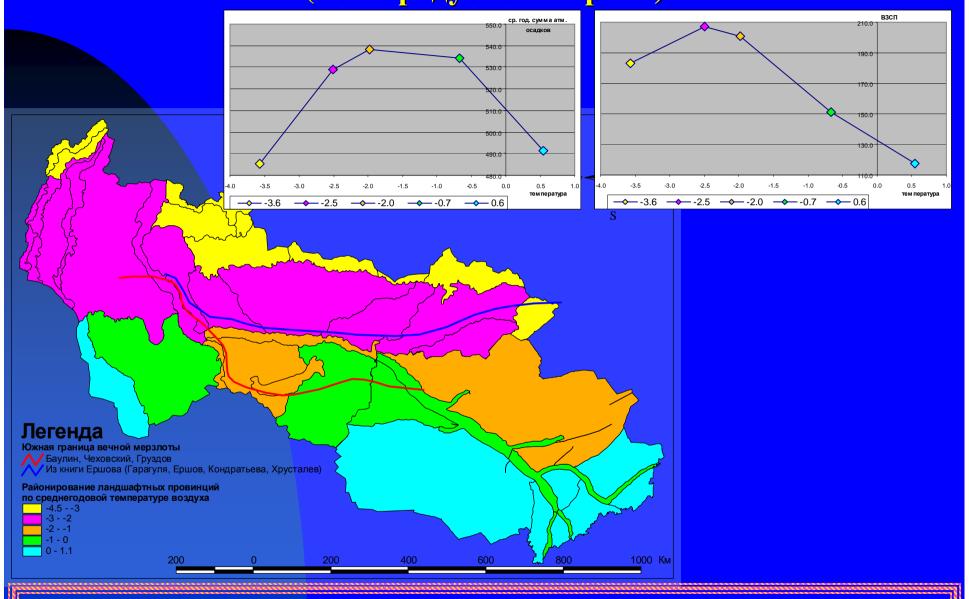

Map of landscape provinces in central and southeast parts of Western Siberia

Анализ структуры природно-ландшафтных провинций с использованием КС МСУ-СК (Томская область)

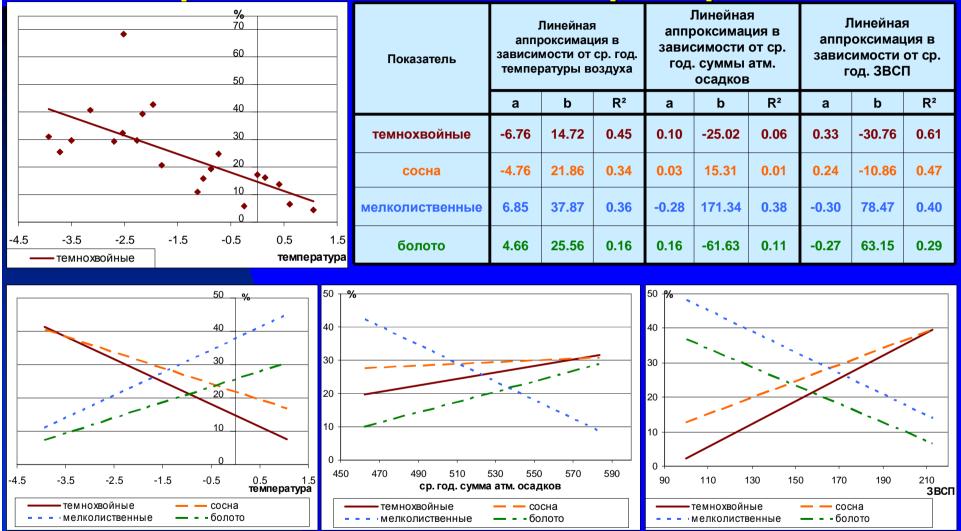
The analysis of structure of natural-landscape provinces using space images of MSU-SK (Tomsk region)


Анализ структуры природно-ландшафтных провинций с использованием КС МСУ-СК (ХМАО)

The analysis of structure of natural-landscape provinces using space images (Khanty-Mansyisk region)


Группирование ландшафтных провинций по температурным поясам с 1-градусной шириной

SUBREGION	%Dark_coniferous	%Pine	%Small-leaved	%Bog	Temperature	Sum_Precipitation	Supply_Water
Полуйская	31.13	33.34	23.25	12.29	-3.9	494.4	174.4
Надымская	25.41	41.81	20.90	11.88	-3.7	487.1	180.9
Казымская	29.55	27.24	27.35	15.85	-3.5	496.2	184.2
Нумтовская	40.68	36.01	22.29	1.02	-3.1	463.3	192.5
Ляминско-Аганская	29.27	48.52	20.37	1.84	-2.7	487.1	207.1
Нижне-Обская	32.41	41.81	15.32	10.46	-2.5	574.9	213.0
Белогорская	68.30	18.88	12.00	0.83	-2.5	555.5	212.4
Назым-Ляминская	29.77	25.72	24.07	20.44	-2.3	498.3	196.5
Подуральская	39.33	37.16	21.05	2.46	-2.2	557.9	204.2
Северососьвинская	42.95	27.19	27.26	2.60	-2.0	535.5	197.3
Средне-Обская	20.88	58.77	18.93	1.41	-1.8	521.3	201.4
Кеть-Тымская	11.01	19.20	21.01	48.78	-1.1	550.5	162.4
Иртышская	15.92	21.98	9.01	53.09	-1.0	564.3	148.5
Юганско-Ларьеганская	19.34	32.41	2.93	45.31	-0.9	583.6	175.2
Александровская	24.83	29.66	9.74	35.77	-0.7	534.2	144.3
Пойменная	6.01	12.43	44.12	37.44	-0.2	511.5	119.8
Кондинская	17.41	29.06	51.25	2.28	0.0	462.4	156.8
Васюганская	16.35	24.20	28.24	31.21	0.1	496.8	112.7
Кондо-Тавдинская	13.83	24.28	56.10	5.79	0.4	523.1	135.8
Чулымская	6.67	13.56	57.80	21.97	0.6	467.9	122.5
Томская	4.46	8.01	62.87	24.66	1.1	477.7	99.9


Grouping of landscape provinces in temperature zones with 1-degree width

Температурное зонирование ландшафтных провинций (по 1-градусной ширине)

Temperature zoning of landscape provinces (zones of 1-degree width)

Взаимосвязь показателей структуры растительного покрова и климатических характеристик

Interrelation of parameters of vegetative cover structure and climatic characteristics

Югорский государственный университет State university of Yugra

Заключение

Таким образом, в результате проведённого комплексного анализа изменений показателей климатического состояния и пространственной структуры растительного покрова на обширной территории Западной Сибири установлена взаимосвязь этих показателей. В частности, показано, что с ростом среднегодовой температуры воздуха сокращается относительная площадь темнохвойных лесов и растут площади мелколиственных лесов и болот. С ростом среднего значения водозапаса в снежном покрове, наоборот, увеличивается относительная площадь темнохвойных лесов и сокращаются площади мелколиственных лесов и болот. Полученные результаты могут быть использованы при прогнозе изменений геоботанической структуры растительности Западной Сибири в условиях глобального потепления.

Summery and conclusion

Югорский государственный университет State university of Yugra

Спасибо за внимание!

Thanks for attention!